216 research outputs found

    Impaired Hyperemic Response to Exercise Post Stroke

    Get PDF
    Individuals with chronic stroke have reduced perfusion of the paretic lower limb at rest; however, the hyperemic response to graded muscle contractions in this patient population has not been examined. This study quantified blood flow to the paretic and non-paretic lower limbs of subjects with chronic stroke after submaximal contractions of the knee extensor muscles and correlated those measures with limb function and activity. Ten subjects with chronic stroke and ten controls had blood flow through the superficial femoral artery quantified with ultrasonography before and immediately after 10 second contractions of the knee extensor muscles at 20, 40, 60, and 80% of the maximal voluntary contraction (MVC) of the test limb. Blood flow to the paretic and non-paretic limb of stroke subjects was significantly reduced at all load levels compared to control subjects even after normalization to lean muscle mass. Of variables measured, increased blood flow after an 80% MVC was the single best predictor of paretic limb strength, the symmetry of strength between the paretic and non-paretic limbs, coordination of the paretic limb, and physical activity. The impaired hemodynamic response to high intensity contractions was a better predictor of lower limb function than resting perfusion measures. Stroke-dependent weakness and atrophy of the paretic limb do not explain the reduced hyperemic response to muscle contraction alone as the response is similarly reduced in the non-paretic limb when compared to controls. These data may suggest a role for perfusion therapies to optimize rehabilitation post stroke

    Sunfleck properties from time series of fluctuating light

    Get PDF
    Light in canopies is highly dynamic since the strength and composition of incoming radiation is determined by the wind and the Sun's trajectory and by canopy structure. For this highly dynamic environment, we mathematically defined sunflecks as periods of high irradiance relative to the background light environment. They can account for a large proportion of the light available for photosynthesis. Based on high-frequency irradiance measurements with a CCD array spectroradiometer, we investigated how the frequency of measurement affects what we define as sunflecks. Do different plant canopies produce sunflecks with different properties? How does the spectral composition and strength of irradiance in the shade vary during a sunfleck? Our results suggest that high-frequency measurements improved our description of light fluctuations and led to the detection of shorter, more frequent and intense sunflecks. We found that shorter wind-induced sunflecks contribute most of the irradiance attributable to sunflecks, contrary to previous reports from both forests and crops. Large variations in sunfleck properties related to canopy depth and species, including distinct spectral composition under shade and sunflecks, suggest that mapping canopy structural traits may help us model photosynthesis dynamically.Peer reviewe

    Evaluation of Vascular Control Mechanisms Utilizing Video Microscopy of Isolated Resistance Arteries of Rats

    Get PDF
    This protocol describes the use of in vitro television microscopy to evaluate vascular function in isolated cerebral resistance arteries (and other vessels), and describes techniques for evaluating tissue perfusion using Laser Doppler Flowmetry (LDF) and microvessel density utilizing fluorescently labeled Griffonia simplicifolia (GS1) lectin. Current methods for studying isolated resistance arteries at transmural pressures encountered in vivo and in the absence of parenchymal cell influences provide a critical link between in vivo studies and information gained from molecular reductionist approaches that provide limited insight into integrative responses at the whole animal level. LDF and techniques to selectively identify arterioles and capillaries with fluorescently-labeled GS1 lectin provide practical solutions to enable investigators to extend the knowledge gained from studies of isolated resistance arteries. This paper describes the application of these techniques to gain fundamental knowledge of vascular physiology and pathology in the rat as a general experimental model, and in a variety of specialized genetically engineered designer rat strains that can provide important insight into the influence of specific genes on important vascular phenotypes. Utilizing these valuable experimental approaches in rat strains developed by selective breeding strategies and new technologies for producing gene knockout models in the rat, will expand the rigor of scientific premises developed in knockout mouse models and extend that knowledge to a more relevant animal model, with a well understood physiological background and suitability for physiological studies because of its larger size

    Two Weeks of Ischemic Conditioning Improves Walking Speed and Reduces Neuromuscular Fatigability in Chronic Stroke Survivors

    Get PDF
    This pilot study examined whether ischemic conditioning (IC), a noninvasive, cost-effective, and easy-to-administer intervention, could improve gait speed and paretic leg muscle function in stroke survivors. We hypothesized that 2 wk of IC training would increase self-selected walking speed, increase paretic muscle strength, and reduce neuromuscular fatigability in chronic stroke survivors. Twenty-two chronic stroke survivors received either IC or IC Sham on their paretic leg every other day for 2 wk (7 total sessions). IC involved 5-min bouts of ischemia, repeated five times, using a cuff inflated to 225 mmHg on the paretic thigh. For IC Sham, the cuff inflation pressure was 10 mmHg. Self-selected walking speed was assessed using the 10-m walk test, and paretic leg knee extensor strength and fatigability were assessed using a Biodex dynamometer. Self-selected walking speed increased in the IC group (0.86 ± 0.21 m/s pretest vs. 1.04 ± 0.22 m/s posttest, means ± SD; P\u3c 0.001) but not in the IC Sham group (0.92 ± 0.47 m/s pretest vs. 0.96 ± 0.46 m/s posttest; P= 0.25). Paretic leg maximum voluntary contractions were unchanged in both groups (103 ± 57 N·m pre-IC vs. 109 ± 65 N·m post-IC; 103 ± 59 N·m pre-IC Sham vs. 108 ± 67 N·m post-IC Sham; P = 0.81); however, participants in the IC group maintained a submaximal isometric contraction longer than participants in the IC Sham group (278 ± 163 s pre-IC vs. 496 ± 313 s post-IC, P = 0.004; 397 ± 203 s pre-IC Sham vs. 355 ± 195 s post-IC Sham; P = 0.46). The results from this pilot study thus indicate that IC training has the potential to improve walking speed and paretic muscle fatigue resistance poststroke

    The benefits of informed management of sunlight in production greenhouses and polytunnels

    Get PDF
    Societal Impact Statement The effective management of light is beneficial for growers of plants in greenhouses, polytunnels and under cloches. The materials and structures used to construct these environments often create light-limited conditions for crops and change the spectral composition of sunlight they receive. Combining practical measures, drawn from knowledge of plant photobiology, allows growers to monitor, forecast and optimise conditions in their growing environment according to its geographical location and the crop grown. Improved management of light through these measures could be expected to improve food quality and yield, and potentially reduce use of energy, water and pesticides. Horticultural production in greenhouses and in polytunnels expands the viable geographic range of many crop species and extends their productive growing season. These semi-controlled growing environments buffer natural fluctuations in heat, cold and light and hold potential to improve food security with a low environmental footprint. Over the last decade, technological advances in cladding materials, smart filters, photo-electric cells for energy production and LED lighting have created opportunities to improve the light environment within these structures. In parallel, there have been large advances in plant photobiology, underpinned by progress in identifying the mechanisms of photomorphogenesis and photoprotection, mediated by plant photoreceptors and their interactions, across regions of the spectrum. However, there remains unexploited potential to synthesise and transfer knowledge from these fields to horticulture, particularly with respect to tailoring the use of sunlight to specific locations and production systems. Here, we systematically explain (1) the value of modelling and monitoring patterns of sunlight to allow for informed design of the growth environment; (2) the means of optimising light conditions through selection of materials and structures; (3) the requirements of different crop plants in terms of the amount and spectral composition of light that will benefit yield and food quality; (4) the potential to combine this knowledge for effective management of the sunlight; and, finally, (5) the additional benefits these actions may bring to growers and society at large, beyond the crops themselves, in terms of water use and energy efficiency.Peer reviewe

    Hyperoxia Causes Mitochondrial Fragmentation in Pulmonary Endothelial Cells by Increasing Expression of Pro-Fission Proteins

    Get PDF
    Objective—We explored mechanisms that alter mitochondrial structure and function in pulmonary endothelial cells (PEC) function after hyperoxia. Approach and Results—Mitochondrial structures of PECs exposed to hyperoxia or normoxia were visualized and mitochondrial fragmentation quantified. Expression of pro-fission or fusion proteins or autophagy-related proteins were assessed by Western blot. Mitochondrial oxidative state was determined using mito-roGFP. Tetramethylrhodamine methyl ester estimated mitochondrial polarization in treatment groups. The role of mitochondrially derived reactive oxygen species in mt-fragmentation was investigated with mito-TEMPOL and mitochondrial DNA (mtDNA) damage studied by using ENDO III (mt-tat-endonuclease III), a protein that repairs mDNA damage. Drp-1 (dynamin-related protein 1) was overexpressed or silenced to test the role of this protein in cell survival or transwell resistance. Hyperoxia increased fragmentation of PEC mitochondria in a time-dependent manner through 48 hours of exposure. Hyperoxic PECs exhibited increased phosphorylation of Drp-1 (serine 616), decreases in Mfn1 (mitofusion protein 1), but increases in OPA-1 (optic atrophy 1). Pro-autophagy proteins p62 (LC3 adapter–binding protein SQSTM1/p62), PINK-1 (PTEN-induced putative kinase 1), and LC3B (microtubule-associated protein 1A/1B-light chain 3) were increased. Returning cells to normoxia for 24 hours reversed the increased mt-fragmentation and changes in expression of pro-fission proteins. Hyperoxia-induced changes in mitochondrial structure or cell survival were mitigated by antioxidants mito-TEMPOL, Drp-1 silencing, or inhibition or protection by the mitochondrial endonuclease ENDO III. Hyperoxia induced oxidation and mitochondrial depolarization and impaired transwell resistance. Decrease in resistance was mitigated by mito-TEMPOL or ENDO III and reproduced by overexpression of Drp-1. Conclusions—Because hyperoxia evoked mt-fragmentation, cell survival and transwell resistance are prevented by ENDO III and mito-TEMPOL and Drp-1 silencing, and these data link hyperoxia-induced mt-DNA damage, Drp-1 expression, mt-fragmentation, and PEC dysfunction

    Ischemic Conditioning Increases Strength and Volitional Activation of Paretic Muscle in Chronic Stroke: A Pilot Study

    Get PDF
    7siIschemic conditioning (IC) on the arm or leg has emerged as an intervention to improve strength and performance in healthy populations, but the effects on neurologic populations are unknown. The purpose of this study was to quantify the effects of a single session of IC on knee extensor strength and muscle activation in chronic stroke survivors. Maximal knee extensor torque measurements and surface EMG were quantified in 10 chronic stroke survivors (>1 year post-stroke) with hemiparesis before and after a single session of IC or Sham on the paretic leg. IC consisted of five minutes of compression with a proximal thigh cuff (inflation pressure = 225 mmHg for IC or 25 mmHg for Sham) followed by five minutes of rest. This was repeated five times. Maximal knee extensor strength, EMG magnitude, and motor unit firing behavior were measured before and immediately after IC or Sham. IC increased paretic leg strength by 10.6plus minus8.5 Nm while no difference was observed in the Sham group (change in Sham = 1.3plus minus2.9 Nm; p = 0.001 IC vs. Sham). IC-induced increases in strength were accompanied by a 31plus minus15% increase in the magnitude of muscle EMG during maximal contractions and a 5% decrease in motor unit recruitment thresholds during sub-maximal contractions. Individuals who had the most asymmetry in strength between their paretic and non-paretic legs had the largest increases in strength (r2= 0.54). This study provides evidence that a single session of IC can increase strength through improved muscle activation in chronic stroke survivors.openembargoed_20190204Hyngstrom, Allison S; Murphy, Spencer A; Nguyen, Jennifer; Schmit, Brian D; Negro, Francesco; Gutterman, David D; Durand, Matthew JHyngstrom, Allison S; Murphy, Spencer A; Nguyen, Jennifer; Schmit, Brian D; Negro, Francesco; Gutterman, David D; Durand, Matthew

    Sunflecks in the upper canopy: dynamics of light-use efficiency in sun and shade leaves of Fagus sylvatica

    Get PDF
    Sunflecks are transient patches of direct radiation that provide a substantial proportion of the daily irradiance to leaves in the lower canopy. In this position, faster photosynthetic induction would allow for higher sunfleck-use efficiency, as is commonly reported in the literature. Yet, when sunflecks are too few and far between, it may be more beneficial for shade leaves to prioritize efficient photosynthesis under shade. We investigated the temporal dynamics of photosynthetic induction, recovery under shade, and stomatal movement during a sunfleck, in sun and shade leaves of Fagus sylvatica from three provenances of contrasting origin. We found that shade leaves complete full induction in a shorter time than sun leaves, but that sun leaves respond faster than shade leaves due to their much larger amplitude of induction. The core-range provenance achieved faster stomatal opening in shade leaves, which may allow for better sunfleck-use efficiency in denser canopies and lower canopy positions. Our findings represent a paradigm shift for future research into light fluctuations in canopies, drawing attention to the ubiquitous importance of sunflecks for photosynthesis, not only in lower-canopy leaves where shade is prevalent, but particularly in the upper canopy where longer sunflecks are more common due to canopy openness

    Sunflecks in the upper canopy : dynamics of light-use efficiency in sun and shade leaves of Fagus sylvatica

    Get PDF
    Sunflecks are transient patches of direct radiation that provide a substantial proportion of the daily irradiance to leaves in the lower canopy. In this position, faster photosynthetic induction would allow for higher sunfleck-use efficiency, as is commonly reported in the literature. Yet, when sunflecks are too few and far between, it may be more beneficial for shade leaves to prioritize efficient photosynthesis under shade. We investigated the temporal dynamics of photosynthetic induction, recovery under shade, and stomatal movement during a sunfleck, in sun and shade leaves of Fagus sylvatica from three provenances of contrasting origin. We found that shade leaves complete full induction in a shorter time than sun leaves, but that sun leaves respond faster than shade leaves due to their much larger amplitude of induction. The core-range provenance achieved faster stomatal opening in shade leaves, which may allow for better sunfleck-use efficiency in denser canopies and lower canopy positions. Our findings represent a paradigm shift for future research into light fluctuations in canopies, drawing attention to the ubiquitous importance of sunflecks for photosynthesis, not only in lower-canopy leaves where shade is prevalent, but particularly in the upper canopy where longer sunflecks are more common due to canopy openness.Peer reviewe

    Pattern Transfer of Sub-10 nm Features via Tin-Containing Block Copolymers

    Get PDF
    Tin-containing block copolymers were investigated as materials for nanolithographic applications. Poly(4-trimethylstannylstyrene-block-styrene) (PSnS-PS) and poly(4-trimethylstannylstyrene-block-4-methoxystyrene) (PSnS-PMOST) synthesized by reversible addition–fragmentation chain transfer polymerization form lamellar domains with periodicities ranging from 18 to 34 nm. Thin film orientation control was achieved by thermal annealing between a neutral surface treatment and a top coat. Incorporation of tin into one block facilitates pattern transfer into SiO_2 via a two-step etch process utilizing oxidative and fluorine-based etch chemistries
    • …
    corecore